8 research outputs found

    Genome-wide association reveals novel genomic loci controlling rice grain yield and its component traits under water-deficit stress during the reproductive stage

    Full text link
    A diversity panel comprising of 296 indica rice genotypes was phenotyped under non-stress and water-deficit stress conditions during the reproductive stage in the 2013 and 2014 dry seasons (DSs) at IRRI, Philippines. We investigated the genotypic variability for grain yield, yield components, and related traits, and conducted genome-wide association studies (GWAS) using high-density 45K single nucleotide polymorphisms. We detected 38 loci in 2013 and 64 loci in 2014 for non-stress conditions and 69 loci in 2013 and 55 loci in 2014 for water-deficit stress. Desynchronized flowering time confounded grain yield and its components under water-deficit stress in the 2013 experiment. Statistically corrected grain yield and yield component values using days to flowering helped to detect 31 additional genetic loci for grain yield, its components, and the harvest index in 2013. There were few overlaps in the detected loci between years and treatments, and when compared with previous studies using the same panel, indicating the complexity of yield formation under stress. Nevertheless, our analyses provided important insights into the potential links between grain yield with seed set and assimilate partitioning. Our findings demonstrate the complex genetic architecture of yield formation and we propose exploring the genetic basis of less complex component traits as an alternative route for further yield enhancement

    Genetic control of plasticity in root morphology and anatomy of rice in response to water deficit

    Get PDF
    Elucidating the genetic control of rooting behavior under water-deficit stress is essential to breed climate-robust rice (Oryza sativa) cultivars. Using a diverse panel of 274 indica genotypes grown under control and water-deficit conditions during vegetative growth, we phenotyped 35 traits, mostly related to root morphology and anatomy, involving 45,000 root-scanning images and nearly 25,000 cross sections from the root-shoot junction. The phenotypic plasticity of these traits was quantified as the relative change in trait value under water-deficit compared with control conditions. We then carried out a genome-wide association analysis on these traits and their plasticity, using 45,608 high-quality single-nucleotide polymorphisms. One hundred four significant loci were detected for these traits under control conditions, 106 were detected under water-deficit stress, and 76 were detected for trait plasticity. We predicted 296 (control), 284 (water-deficit stress), and 233 (plasticity) a priori candidate genes within linkage disequilibrium blocks for these loci. We identified key a priori candidate genes regulating root growth and development and relevant alleles that, upon validation, can help improve rice adaptation to water-deficit stress. (Résumé d'auteur

    Incorporating genome-wide association into eco-physiological simulation to identify markers for improving rice yields

    No full text
    We explored the use of the eco-physiological crop model GECROS to identify markers for improved rice yield under well-watered (control) and water deficit conditions. Eight model parameters were measured from the control in one season for 267 indica genotypes. The model accounted for 58% of yield variation among genotypes under control and 40% under water deficit conditions. Using 213 randomly selected genotypes as the training set, 90 single nucleotide polymorphism (SNP) loci were identified using a genome-wide association study (GWAS), explaining 42-77% of crop model parameter variation. SNP-based parameter values estimated from the additive loci effects were fed into the model. For the training set, the SNP-based model accounted for 37% (control) and 29% (water deficit) of yield variation, less than the 78% explained by a statistical genomic prediction (GP) model for the control treatment. Both models failed in predicting yields of the 54 testing genotypes. However, compared with the GP model, the SNP-based crop model was advantageous when simulating yields under either control or water stress conditions in an independent season. Crop model sensitivity analysis ranked the SNP loci for their relative importance in accounting for yield variation, and the rank differed greatly between control and water deficit environments. Crop models have the potential to use single-environment information for predicting phenotypes under different environments.</p

    Incorporating genome-wide association into eco-physiological simulation to identify markers for improving rice yields

    No full text
    We explored the use of the eco-physiological crop model GECROS to identify markers for improved rice yield under well-watered (control) and water deficit conditions. Eight model parameters were measured from the control in one season for 267 indica genotypes. The model accounted for 58% of yield variation among genotypes under control and 40% under water deficit conditions. Using 213 randomly selected genotypes as the training set, 90 single nucleotide polymorphism (SNP) loci were identified using a genome-wide association study (GWAS), explaining 42-77% of crop model parameter variation. SNP-based parameter values estimated from the additive loci effects were fed into the model. For the training set, the SNP-based model accounted for 37% (control) and 29% (water deficit) of yield variation, less than the 78% explained by a statistical genomic prediction (GP) model for the control treatment. Both models failed in predicting yields of the 54 testing genotypes. However, compared with the GP model, the SNP-based crop model was advantageous when simulating yields under either control or water stress conditions in an independent season. Crop model sensitivity analysis ranked the SNP loci for their relative importance in accounting for yield variation, and the rank differed greatly between control and water deficit environments. Crop models have the potential to use single-environment information for predicting phenotypes under different environments

    Genetic Mapping of the Root Mycobiota in Rice and its Role in Drought Tolerance

    No full text
    International audienceRice is the second most produced crop worldwide, but is highly susceptible to drought. Micro-organisms can potentially alleviate the effects of drought. The aim of the present study was to unravel the genetic factors involved in the rice-microbe interaction, and whether genetics play a role in rice drought tolerance. For this purpose, the composition of the root mycobiota was characterized in 296 rice accessions (Oryza sativa L. subsp. indica) under control and drought conditions. Genome wide association mapping (GWAS) resulted in the identification of ten significant (LOD &gt; 4) single nucleotide polymorphisms (SNPs) associated with six root-associated fungi: Ceratosphaeria spp., Cladosporium spp., Boudiera spp., Chaetomium spp., and with a few fungi from the Rhizophydiales order. Four SNPs associated with fungi-mediated drought tolerance were also found. Genes located around those SNPs, such as a DEFENSIN-LIKE (DEFL) protein, EXOCYST TETHERING COMPLEX (EXO70), RAPID ALKALINIZATION FACTOR-LIKE (RALFL) protein, peroxidase and xylosyltransferase, have been shown to be involved in pathogen defense, abiotic stress responses and cell wall remodeling processes. Our study shows that rice genetics affects the recruitment of fungi, and that some fungi affect yield under drought. We identified candidate target genes for breeding to improve rice-fungal interactions and hence drought tolerance
    corecore